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NONLINEAR EQUATIONS OF ELASTIC DEFORMATION OF PLATES

UDC 539.3A. E. Alekseev

A method for constructing nonlinear equations of elastic deformation of plates with boundary con-
ditions for stresses and displacements at the face surfaces in an arbitrary coordinate system is pro-
posed. The initial three-dimensional problem of the nonlinear theory of elasticity is reduced to a
one-parameter sequence of two-dimensional problems by approximating the unknown functions by
truncated series in Legendre polynomials. The same unknowns are approximated by different trun-
cated series. In each approximation, a linearized system of equations whose differential order does
not depend on the boundary conditions at the face surfaces which can be formulated in terms of
stresses or displacements is obtained.

Generally, the nonlinear equations governing the elastic deformation of plates are three-dimensional equations
of the nonlinear theory of elasticity. The dimensionality of the initial problem can be reduced by various methods.
The effective methods of reducing a three-dimensional problem to a two-dimensional problem are based on the
expansion of the desired quantities in series in terms of Legendre polynomials (see, e.g., [1]). Ivanov [2] proposed
a method for reducing the dimensionality of the linear problems of elastic deformation of the plates and shells
of constant thickness with arbitrary boundary conditions for displacements and stresses at the face surfaces that
is based on several approximations of the same unknown functions by truncated series in Legendre polynomials.
Using this method, Alekseev [3] obtained a one-parameter family of successive approximations of the equations of a
deformable layer of variable thickness in an arbitrary coordinate system. In the present paper, the method proposed
in [2, 3] is generalized to the nonlinear deformation of elastic plates.

1. Equations of the Nonlinear Theory of Elasticity in an Arbitrary Curvilinear System of
Coordinates. We consider an arbitrary curvilinear system of Lagrangian coordinates ξi (i = 1, 2, 3). The
equations of equilibrium for a continuous medium are written in the vector form

t̂i,i + f̂ = 0, t̂i = Jti, f̂ = Jf , ti = σijgj ; (1.1)

gi × t̂i = 0, J = g1 · (g2 × g3). (1.2)

Here gi is the covariant basis of the curvilinear system of coordinates ξi in a deformed state, J = g1 · (g2 × g3) is
the Jacobian of the transformation of coordinates, σij are the components of the Cauchy stress tensor, and f is the
vector of body forces. Equality (1.2) is implied by the symmetry of the stress tensor.

The components of the Green–Lagrange strain tensor εij are related to the displacement vector u by the
nonlinear relations

2εij =
0
gi ·u,j+

0
gj ·u,i + u,i · u,j , (1.3)

where
0
gi is the covariant basis of the coordinate system ξi in the undeformed state, and the zero above the symbol

shows that the quantity corresponds to the undeformed state.
The covariant basis vectors of the coordinate system ξi in the deformed state have the form

gi =
0
gi +u,i. (1.4)
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With allowance for (1.3) and (1.4), the strain variations δεij are given by

2δεij = gi · δu,j + gj · δu,i. (1.5)

Hooke’s law is taken in the form

τ ij =
0

C
ijksεks, (1.6)

where τ ij are the covariant components of the second Piola–Kirchhoff stress tensor,
0

C ijks are the contravariant

components of the fourth-rank tensor which are subjected to the symmetry conditions
0

C ijks =
0

C jiks =
0

C ksij .
In the coordinate system ξi, the equality

0

J τ
ij = Jσij (1.7)

is valid. Here
0

J=
0
g1 · (

0
g2 ×

0
g3) is the Jacobian of the transformation of coordinates in the undeformed-state metric.

Below, the boundary conditions refer to the undeformed state.

We assume that the boundary of an undeformed body
0

S consists of two parts: the part
0

Su, where the
displacements

u
∣∣∣ 0
Su

= u∗ (1.8)

are specified, and the part
0

Sσ, where the stresses

τ ijgj
0
νi

∣∣∣ 0
Sσ

= p∗. (1.9)

are specified. Here
0
νi =

0
ν · 0
gi (

0
ν is the outward normal to the boundary

0

S), u∗ and p∗ are vector functions specified

on
0

S.
Given the equations of equilibrium (1.1) and (1.2) and the boundary conditions (1.8) and (1.9), we can write

the virtual-work principle ∫
0
V

τ ijδεij d
0

V=
∫
0
Sσ

p∗ · δu d
0

S . (1.10)

Relative to the undeformed state, the boundary-value problem (1.1)–(1.9) is assumed to be the initial
boundary-value problem of the nonlinear theory of elasticity.

2. Expansion of Functions in Terms of Legendre Polynomials. We consider a plate of constant

thickness 2h. In the undeformed state, the plate occupies the volume
0

V bounded by the face surfaces
0

S + and
0

S −

and edge surface
0

Σ.
Let xi be the Cartesian coordinates. In the undeformed state, the middle surface of the plate coincides with

the coordinate plane x3 = 0, and the face surfaces
0

S + and
0

S − correspond to x3 = +h and x3 = −h, respectively.
We choose the curvilinear system of Lagrangian coordinates ξk in such a manner that the coordinate axis ξ3

coincides with the x3 axis in the undeformed state. The coordinates x3 and ξ3 are related by the formula x3 = hξ3.

In the undeformed state, the position of any internal point in a plate of volume
0

V is given by the vector function
of curvilinear coordinates ξk

0

R(ξk) =
0
r (ξα) + hnξ3, ξk ∈ Vξ ⊂ R3, (2.1)

where Vξ = {ξk|ξα ∈ Sξ ⊂ R2, ξ3 ∈ [−1, 1]} and n is the unit normal vector directed along the x3 axis.
Differentiating both sides of equality (2.1) with respect to the variables ξk, we obtain the vector functions

0
gα=

0

R,α=
0
r,α, g3 =

0

R,3= hn
( 0

R,α=
∂

0

R

∂ξα

)
, (2.2)

which form the covariant local basis of the coordinate system ξk in the undeformed state.
It follows from (2.2) that the vectors

0
gα depend only on the coordinates ξα and that the vector

0
g3 is

independent of ξk.
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Since ξ3 ∈ [−1, 1], the unknown functions u and t̂i can be expanded in series in terms of Legendre polynomials

u =
∞∑
k=0

[u]kPk, t̂i =
∞∑
k=0

[̂ti]kPk. (2.3)

Here Pk(ξ3) are the orthogonal Legendre polynomials and [u]k and [̂ti]k are the expansion coefficients which depend
on the coordinates {ξα} ∈ Sξ ⊂ R2:

[u]k =
1 + 2k

2

1∫
−1

uPk dξ
3, [̂ti]k =

1 + 2k
2

1∫
−1

t̂iPk dξ
3. (2.4)

The integrands in (2.4) include the quantities t̂i which can be written by means of formulas (1.7) and (1.4)
in the form

t̂i = Jσijgj =
0

J τ
ij(

0
gi +u,i). (2.5)

3. Approximation of Stresses. We write the equations of equilibrium (1.1) in the equivalent form
0
g j · (t̂i,i + f) = 0 (j = 1, 2, 3). (3.1)

In the undeformed state, the components of the contravariant basis
0
gj do not depend on the ξ3 coordinate. Therefore,

expanding Eqs. (3.1) in series in terms of Legendre polynomials, we obtain the system
0
gα · ([̂tα]k,α + [̂t3,3]k + [f̂ ]k) = 0 (k = 0, N + 1),

(3.2)
0
g 3 · ([̂tα]k,α + [̂t3,3]k + [f̂ ]k) = 0 (k = 0, N),

where N > 0 is an arbitrary number. The number of terms in expansions (3.2) is chosen in the same manner as in
the linear case considered in [2, 3]. For each k, we multiply Eqs. (3.2) by Pk and summarize. As a result, we obtain

0
gα · (T̂ ′i,i + F̂ ) = 0,

0
g 3 · (T̂ ′′i,i + F̂ ) = 0. (3.3)

Here the quantities T̂ ′i, T̂ ′′i, and F̂ correspond to the truncated series

T̂ ′α =
N+1∑
k=0

[̂tα]kPk, T̂ ′′α =
N∑
k=0

[̂tα]kPk,

T̂ ′3 = T̂ ′′3 =
0
gα

N+2∑
k=0

([̂t3]k· 0
gα)Pk+

0
g3

N+1∑
k=0

([̂t3]k· 0
g 3)Pk, (3.4)

F̂ =
0
gα

N+1∑
k=0

([f̂ ]k· 0
gα)Pk+

0
g3

N∑
k=0

([f̂ ]k· 0
g 3)Pk.

Thus, two approximations T̂ ′α and T̂ ′′α, which differ only by a number of terms retained in the series,
correspond to the same quantities t̂α in (3.3).

4. Approximation of Strains and Displacements. Let the displacement-vector variations δu vanish at

the boundary
0

Su. For simplicity, we restrict ourselves to the case where F̂ = 0.
From Eqs. (3.3) follows the equality∫

Vξ

[(
0
gα · T̂ ′i,i )(

0
gα · δu) + (

0
g 3 · T̂ ′′i,i )(

0
g3 · δu)] dVξ = 0 (dVξ = dξ1 dξ2 dξ3). (4.1)

Integrating (4.1) by parts, we obtain∫
Vξ

{[(0
gα · T̂ ′i)(0

gα · δu)],i + [(
0
g 3 · T̂ ′′i,i )(

0
g3 · δu)],i} dVξ =

∫
Vξ

{T̂ ′i · [0
gα(

0
gα ·δu)],i + T̂ ′′i · [0

g 3(
0
g3 ·δu)],i} dVξ. (4.2)

Using the properties of Legendre polynomials, we write the right side of (4.2) in the form
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∫
Vξ

{T̂ ′i · [0
gα(

0
gα ·δu)],i + T̂ ′′i · [0

g 3(
0
g3 ·δu)],i} dVξ =

∫
Vξ

{T̂ ′α · [0
gα(

0
gα · δu)],α + T̂ ′′α · [0

g 3(
0
g3 ·δu)],α + T̂ 3 · δu,3} dVξ

=
∫
Vξ

{
t̂α ·

[
0
g α

(
0
gα ·

N+1∑
k=0

[δu]kPk

)]
,α

+ t̂α ·

[
0
g 3

(
0
g3 ·

N∑
k=0

[δu]kPk

)]
,α

+ t̂3 · δU ′′,3

}
dVξ

=
∫
Vξ

{t̂α · δU ′,α + t̂3 · δU ′′,3}dVξ. (4.3)

Here

δU ′ =
0
gα

(
0
gα ·

N+1∑
k=0

[δu]kPk

)
+

0
g 3

(
0
g3 ·

N∑
k=0

[δu]kPk

)
, δU ′′ =

0
gα
(

0
gα ·

N+3∑
k=0

[δu]kPk
)

+
0
g 3
(

0
g3 ·

N+2∑
k=0

[δu]kPk
)
.(4.4)

Substituting expressions (2.5) for t̂i into (4.3) and using the symmetry of the stress tensor τ ij , we perform the
transformation ∫

Vξ

(t̂α · δU ′,α + t̂3 · δU ′′,3) dVξ =
∫
0
V

(ταkgk · δU ′,α + τ3kgk · δU ′′,3) d
0

V

=
∫
0
V

[ταβ0.5 (gβ · δU ′,α + gα · δU ′,β) + τ3α(gα · δU
′′
,3 + g3 · δU

′
,α) + τ33(g3 · δU

′′
,3)] d

0

V ,

d
0

V=
0

J dξ1 dξ2 dξ3.

Denoting the parentheses expressions by δEij , we obtain

2δEαβ = gβ · δU
′
,α + gα · δU

′
,β , 2δE3α = gα · δU

′′
,3 + g3 · δU

′
,α, δE33 = g3 · δU

′′
,3. (4.5)

Finally, we have ∫
Vξ

{T̂ ′i · [0
gα(

0
gα ·δu)],i + T̂ ′′i · [0

g 3(
0
g3 ·δu)],i} dVξ =

∫
0
V

τ ijδEij d
0

V . (4.6)

The quantities δEij in (4.5) approximate the variations δεij by truncated series in terms of Legendre polynomials
[see (1.5)]. The vectors δU ′ and δU ′′ [see (4.4)] are the approximations of the displacement-vector variations δu
and they are used to calculate the derivatives with respect to the ξα coordinates and the ξ3 coordinate, respectively.
Bearing this in mind, we introduce the following change in expressions (1.4) for the covariant basis vectors of a
deformed state gi:

Gα =
0
gα +U ′,α, G3 =

0
g3 +U ′′,3. (4.7)

Substituting approximations (4.7) into expressions (4.5) in place of the covariant basis vectors of a deformed state gi,
we obtain

2Eαβ =
0
gβ ·U

′
,α+

0
gα ·U

′
,β +U ′,α · U

′
,β , 2E3α =

0
gα ·U

′′
,3+

0
g3 ·U

′
,α +U ′,α · U

′′
,3,

(4.8)

E33 =
0
g3 ·U

′′
,3 + 0.5U ′′,3 ·U

′′
,3.

Here the vectors U ′ and U ′′ are written in the form of truncated series similar to those in (4.4):

U ′ =
0
gα

(
0
gα ·

N+1∑
k=0

[u]kPk

)
+

0
g 3

(
0
g3 ·

N∑
k=0

[u]kPk

)
,

(4.9)

U ′′ =
0
gα

(
0
gα ·

N+3∑
k=0

[u]kPk

)
+

0
g 3

(
0
g3 ·

N+2∑
k=0

[u]kPk

)
.

Expressions (4.8) are the approximations Eij of the Green–Lagrange strain tensor εij (1.3).
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5. Approximation of the Boundary Conditions. We denote the left side of equality (4.2) by L.
Integration yields

L =
∫
Σξ

[(
0
gα · T̂ ′i)(0

gα · δu) + (
0
g 3 · T̂ ′′i,i )(

0
g3 · δu)] dξ2 dξ3 +

∫
Σξ

[(
0
gα · T̂ ′i)(0

gα · δu)

+ (
0
g 3 · T̂ ′′i,i )(

0
g3 · δu)] dξ1 dξ3 +

∫
S+
ξ

T̂ 3 · δu dξ1 dξ2 −
∫
S−ξ

T̂ 3 · δu dξ1 dξ2. (5.1)

Here T̂ 3 = T̂ ′3 = T̂ ′′3.
We calculate the sum of the first two integrals in (5.1). To this end, using the orthogonality property of

Legendre polynomials, we replace the vector δu by the corresponding truncated series for δU ′.
In the initial configuration, the equalities

dξ1 dξ3 =
0
ν2 d

0

Σ/
0

J, dξ2 dξ3 =
0
ν1 d

0

Σ/
0

J (5.2)

are valid at the edge surface
0

Σ to which the coordinate line ξ3 corresponds. Here
0
να =

0
ν · 0

gα (
0
ν is the outward

normal vector to the edge surface
0

Σ).
Inserting (5.2) into (5.1), we obtain the sum of the first two integrals∫

0
Σ

T̂ α · δU ′
0

J

0
να d

0

Σ, T̂ α =
0
gγ (T̂ ′α· 0

g γ)+
0
g3 (T̂ ′′α· 0

g 3). (5.3)

In the last two integrals in (5.1), which refer to the face surfaces
0

S + and
0

S −, we transform the product dξ1 dξ2,

namely, dξ1 dξ2 = d
0

S+/
0

J= −d
0

S−/
0

J .
We write equality (5.1) in the form

L =
∫
0
Σ

T̂ α · δU ′
0

J

0
να d

0

Σ +
∫
0
S+

T̂ 3 · δu
0

J

d
0

S
+ +

∫
0
S−

T̂ 3 · δu
0

J

d
0

S
−. (5.4)

It follows from the first integral in (5.4) that the boundary conditions (1.8) and (1.9) at the edge surface
0

Σ are
approximated by the truncated series

U ′
∣∣∣ 0
Σu

= U ′∗, δU ′
∣∣∣ 0
Σu

= 0,
T̂ αν0

α
0

J

∣∣∣ 0
Σσ

= P ′∗ (
0

Σu ∪
0

Σσ=
0

Σ). (5.5)

Here the vectors U ′∗ and P ′∗ are written in the form of truncated series similar to the truncated series (4.9) and (5.3):

U ′∗ =
0
gα

(
0
gα ·

N+1∑
k=0

[u∗]kPk

)
+

0
g 3

(
0
g3 ·

N∑
k=0

[u∗]kPk

)
,

P ′∗ =
0
gα

(
0
gα ·

N+1∑
k=0

[p∗]
kPk

)
+

0
g 3

(
0
g3 ·

N∑
k=0

[p∗]
kPk

)
.

We now consider the face surfaces
0

S+ and
0

S−. In the last two integrals on the right side of (5.4), the vectors

δU ′′ and T̂ 3/
0

J are used as variations of the displacement vector and the surface load, respectively. Therefore, the
boundary conditions

U ′′
∣∣∣ 0
S

+
u

= u∗, δU ′′
∣∣∣ 0
S

+
u

= 0, U ′′
∣∣∣ 0
S
−
u

= u∗, δU ′′
∣∣∣ 0
S
−
u

= 0,

(5.6)
T̂ 3

0

J

∣∣∣ 0
S

+
σ

= p∗,
T̂ 3

0

J

∣∣∣ 0
S
−
σ

= p∗
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are formulated at the surfaces
0

S+
σ and

0

S−σ . With allowance for (5.5) and (5.6), we write equality (5.4) in the final
form

L =
∫
0
Σσ

p′∗ · δU ′ d
0
σ +

∫
0
S

+
σ

p∗ · δU
′′ d

0

S
+ +

∫
0
S
−
σ

p∗ · δU
′′ d

0

S
−. (5.7)

Thus, equality (4.2) is reduced to the form∫
0
V

τ ijδEij d
0

V=
∫
0
Σσ

p′∗ · δU ′ d
0
σ +

∫
0
S

+
σ

p∗ · δU ′′ d
0

S
+ +

∫
0
S
−
σ

p∗ · δU ′′ d
0

S
−. (5.8)

For the approximations introduced above, equality (5.8) is an analog of the virtual-work principle (1.10). This
variational principle yields the equations of equilibrium (3.3) and the boundary conditions for stresses (5.5) and (5.6).

6. Approximation of Hooke’s Law. Hooke’s law (1.6) is approximated by

τ ij =
0

C
ijksEks, (6.1)

where Eks are the approximations (4.8) of the Green–Lagrange strain tensor. In accordance with (2.3)–(2.5), the
coefficients of series expansions of the quantities t̂i in terms of Legendre polynomials have the form

[̂ti]k =
1 + 2k

2

1∫
−1

0

J
0

C
ijksEksGjPk dξ

3. (6.2)

7. System of Nonlinear Equations of the Nth Approximation. Summing up the above results, we
write a two-dimensional system of nonlinear equations of the Nth approximation which comprises

— the equations of equilibrium (3.3)
0
gα · (T̂ ′i,i + F̂ ) = 0,

0
g 3 · (T̂ ′′i,i + F̂ ) = 0; (7.1)

— the relations of Hooke’s law (6.1) which are written, with allowance for (6.2), in the form of truncated
series (3.4)

T̂ ′α =
N+1∑
k=0

Pk
1 + 2k

2

1∫
−1

0

J
0

C
αjmnEmnGjPk dξ

3, T̂ ′′α =
N∑
k=0

Pk
1 + 2k

2

1∫
−1

0

J
0

C
αjmnEmnGjPk dξ

3,

(7.2)

T̂ ′3 = T̂ ′′3 =
0
gα

N+2∑
k=0

(
Pk

1 + 2k
2

0
gα·

1∫
−1

0

J
0

C
3jmnEmnGjPk dξ

3

)
+

0
g3

N+1∑
k=0

(
Pk

1 + 2k
2

0
g 3·

1∫
−1

0

J
0

C
3jmnEmnGjPk dξ

3

)
;

— the boundary conditions at the face surfaces (5.6)

U ′′
∣∣∣ 0
S

+
u

= u∗, U ′′
∣∣∣ 0
S
−
u

= u∗,
T̂ 3

0

J

∣∣∣ 0
S

+
σ

= p∗,
T̂ 3

0

J

∣∣∣ 0
S
−
σ

= p∗. (7.3)

The system of nonlinear equations (7.1)–(7.3) is supplemented by the boundary conditions at the edge
surfaces (5.5)

U ′
∣∣∣ 0
Σu

= U ′∗,
T̂ αν0

α
0

J

∣∣∣ 0
Σσ

= P ′∗ (
0

Σu ∪
0

Σσ=
0

Σ),

(7.4)

T̂ α =
0
gγ (T̂ ′α· 0

g γ)+
0
g3 (T̂ ′′α· 0

g 3).

8. Linearized System of the Nth Approximation. Let the solution of the boundary-value problem
(7.1)–(7.4) be known. In addition to this state, we consider a perturbed state characterized by the perturbed
displacements Ũ ′ and Ũ ′′:

Ũ ′ = U ′ + ∆U ′, Ũ ′′ = U ′′ + ∆U ′′. (8.1)

Here the perturbation vectors ∆U ′ and ∆U ′′ have the form of truncated series similar to the truncated series (4.9).
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Assuming that the quantities ∆U ′ and ∆U ′′ are small, the equations governing the perturbed state can
be simplified by ignoring the terms nonlinear in perturbations. Denoting the terms which contain only the linear
components of the perturbations ∆U ′ and ∆U ′′ by (̃·), we obtain

— relations for the vectors of the covariant basis in the perturbed state

G̃i = Gi + ∆Gi, ∆Gα = ∆U ′,α, ∆G3 = ∆U ′′,3; (8.2)

— relations for the components of the Green–Lagrange strain tensor

Ẽij = Eij + ∆Eij ,

2∆Eαβ = Gα ·∆U ′,β +Gβ ·∆U ′,α, 2∆Eα3 = Gα ·∆U ′′,3 +G3 ·∆U ′,α, (8.3)

∆E33 = G3 ·∆U ′′,3;

— relations for the components of the stress tensor τ ij

τ̃ ij = τ ij + ∆τ ij , ∆τ ij =
0

C
ijks∆Eks;

— relations for the coefficients of series (3.4) [̂ti]k

˜[̂ti]k = [̂ti]k + ∆[̂ti]k; (8.4)

∆[̂ti]k =
1 + 2k

2

1∫
−1

0

J (
0

C
ijmn(∆EmnGj + Emn∆Gj)Pk) dξ3. (8.5)

In addition to the basis vectors Gj , we introduce the biorthogonal basis Gi: Gj ·Gi = δij (δij is the Kronecker
symbol). This allows us to show that

0

C
ijmn(∆EmnGj + Emn∆Gj) = C̃ijmα(Gm ·∆U ′,α)Gj + C̃ijm3(Gm ·∆U ′′,3)Gj ,

where

C̃ijmn =
0

C
ijmn + τ inGmj , Gmj = Gm ·Gj , (8.6)

and reduce expressions (8.5) to the form

∆[̂ti]k =
1 + 2k

2

1∫
−1

0

J (C̃ijmn(Gm ·∆Gn)Gj)Pk dξ3. (8.7)

Using relations (8.1)–(8.4) and (8.7), we linearize the nonlinear system (7.1)–(7.4). As a result, we obtain a linear
system which comprises

— the equations of equilibrium (3.3)
0
gα · (∆T̂ ′i,i + ∆F̂ ) = 0,

0
g 3 · (∆T̂ ′′i,i + ∆F̂ ) = 0; (8.8)

— Hooke’s law relations (8.1) written in the form of truncated series (3.4):

∆T̂ ′α=
N+1∑
k=0

Pk
1 + 2k

2

1∫
−1

0

J C̃
αjmn(Gm ·∆Gn)GjPk dξ

3, ∆T̂ ′′α=
N∑
k=0

Pk
1 + 2k

2

1∫
−1

0

J C̃
αjmn(Gm ·∆Gn)GjPk dξ

3,

∆T̂ ′3 = ∆T̂ ′′3 =
0
gα

N+2∑
k=0

(
Pk

1 + 2k
2

0
gα ·

1∫
−1

0

J C̃
3jmn(Gm ·∆Gn)GjPk dξ

3

)
(8.9)

+
0
g3

N+1∑
k=0

(
Pk

1 + 2k
2

0
g 3 ·

1∫
−1

0

J C̃
3jmn(Gm ·∆Gn)GjPk dξ

3

)
;
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— the boundary conditions at the face surfaces (5.6)

∆U ′′
∣∣∣ 0
S

+
u

= ∆u∗, ∆U ′′
∣∣∣ 0
S
−
u

= ∆u∗,
∆T̂ 3

0

J

∣∣∣ 0
S

+
σ

= ∆p∗,
∆T̂ 3

0

J

∣∣∣ 0
S
−
σ

= ∆p∗. (8.10)

The system of linear equations (8.8)–(8.11) is supplemented by the linearized boundary conditions at the
edge surfaces (5.5)

∆U ′
∣∣∣ 0
Σu

= ∆U ′∗,
∆T̂ αν0

α
0

J

∣∣∣ 0
Σσ

= ∆P ′∗ (
0

Σu ∪
0

Σσ=
0

Σ),
(8.11)

∆T̂ α =
0
gγ (∆T̂ ′α · 0

g γ)+
0
g3 (∆T̂ ′′α · 0

g 3).

Let us determine the differential order of the linear system (8.8)–(8.10) using the method of [3]. The strain–
displacement relations (8.3) contain the coefficients of the series ∆U ′ together with the first-order partial derivatives
with respect to the coordinates ξα. Precisely these derivatives determine the differential order of the system and
they must satisfy the boundary conditions at the edge surface (8.11). Six scalar coefficients of the series ∆U ′′−∆U ′

enter the system (8.8)–(8.11) without derivatives. We call the first and second groups of unknown coefficients the
basic and supplementary unknowns, respectively. The supplementary unknowns are determined from Eqs. (8.10),
which are the boundary conditions at the face surfaces. These equations constitute a system of linear algebraic
equations for the supplementary unknowns whose solution allows one to express the supplementary unknowns in
terms of the basic unknowns. Substitution of these expressions into (8.9) leads to relations between the vector
function ∆T̂ ′α, ∆T̂ ′′α, and ∆T̂ 3 and the basic unknowns, i.e., the coefficients of the series ∆U ′. These equations
represent the linear forms relative to the coefficients of the series ∆U ′ and their derivatives.

Substituting the expressions for ∆T̂ ′α, ∆T̂ ′′α, and ∆T̂ 3 into the equations of equilibrium (8.8), we obtain
a system consisting of 2(N + 2) + 1 second-order partial scalar equations. Thus, we have a system of the order 2n
for determination of n functions when

n = 2(N + 2) + 1. (8.12)

The differential order of the linearized system of the Nth approximation is independent of the form of boundary
conditions at the face surfaces which can be specified in terms of stresses or displacements.

The first approximation corresponds to N = 0. In this case, it follows from (8.12) that n = 5, i.e., the basic
unknowns are five in number (three displacements of the middle surface and two rotations). The corresponding
differential order of system (8.8)–(8.10) is equal to ten.

Using the results obtained in [3], one can obtain a system of linear equations of the Nth approximation gov-
erning the linear elastic deformation of plates which coincides with the linearized equations (8.8)–(8.10). However,
there is a difference in the determination of the matrix C̃ijmn. First, only one symmetry condition C̃ijmn = C̃mnij

is satisfied as is seen from (8.6). Second, the properties of the matrix C̃ijmn are determined not only by the elastic
constants but also the stresses τ ij . For example, for certain values of τ ij , the matrix C̃ijmn can be not positive
definite and the question of the existence and uniqueness of the solution of the linearized boundary-value problem
(8.8)–(8.11) arises.
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